Optimizing Latency in
Function-as-a-Service
with Distributed Promises

Soam Vasani, Erwin van Eyk

Platform9 Systems Inc.

Erwin van Eyk

Function-as-a-Service Market estimated
to be worth $7.72 Billion by 2021

Adoption of FaaS (AWS Lambda) Serverless Matches Container Adoption

Functions as a Service

= or Other Serverless
o Technologies
g
e
o

Containers

M Dynamic Cloud Use
Q1
2017 Container Orchestration M Static Cloud Use

Source: The New Stack Analysis of a February 2017 survey of 500+ IT professionals (https://newrelic.com/content/dam/new-

Gartner 2017 Function-as-a-Service is one
of the top trends in cloud computing. e s e s

is able to agilely re-allocate resources.

https://www.marketsandmarkets.com/Market-Reports/function-as-a-service-market-127202409.html|
http://get.cloudability.com/ebook-state-of-cloud-2018.html

https://www.marketsandmarkets.com/Market-Reports/function-as-a-service-market-127202409.html
http://get.cloudability.com/ebook-state-of-cloud-2018.html

Research into Function-as-a-Service

SPEC RG CLOUD
Serverless Activity R

Serverless

Combined industry and academia
effort to address high-level
(performance) challenges

Terminology

Challenges

Reference Architectures
Benchmarking

@Large Research

Massivizing Computer Systems

Actively exploring challenges in FaaS

Complex FaaS function composition
using workflows.

On-demand Graph Processing with
FaaS

<~

PLATFORM®@

Open Source Software as a Service

laaS OpenStack
PaaS Kubernetes
FaaS Fission (own product)

Serverless Cloud Native Landscape See the serverless interactive landscape at s.cncf.io

v2.1
10 | pipe @Q ‘ =) Stackvana
STACKERY

Architect i LambCl Node Lambda

Libraries

A P E X EM-I/S’ ELJ—S’Ti-rE_ ‘ A — / 0 Gordon % gun.io kappaIO M ggggp @ == serverless SPARTA é

Chalice Claudia.js FLO GO SAM Local Spring Cloud Function

()
X
P
o
2
(]
=
a
o
-

Kubernetes-Native

<;> @ Q [Hyper sH ij ®Kubeless @
Azuro Functions. Clay

Goage ClocdFuncins 1BM Cloud OPENFARAS

AWS Lambda

Platforms

@ wown @ Lootinst <stdliby svncano @ twilio I3 e @ ﬂ 4 4 ﬁ

OVERCLOCK
el GatAcric rog LunchBadger

Serverless comp 0 a new model of cloud native computing, m CLOUD NATIVE

P} a SE R, enabled by archit@ S that do not require server management to Landsca pe
¥ build and run applications. This landscape illustrates a finer-grained

(4 R deployment model where applications, bundled as one or more &,':,E?,H,E ;’g&ﬂ%ﬁ
PURESEC sny ? functions, are uploaded to a platform and then executed, scaled, and

github.com/cncf/landscape billed in response to the exact demand needed at the moment. ‘ Redpoint

Security

FaaS Function Model

Function characteristics

AtO m | C Deployed

Finite runtime
Self-contained

Stateless

1, fission

HTTP Requests

l
Controller manages function FiSCSLi?” } ‘—
definitions and exposes API. —
Poolmgr maintains a pool of o !I - .

running ‘generic conjcalners to

reduce deployment time of 'Generic" “Specific”
functions. A 4 pods Function pods
Router directs requests to the

‘right’ deployed function. kubernetes

Composing Complex Functions

0—0
N N

- Dealing with communication logic

- Structure hard to understand

- Implicit dependencies

- Performance overhead of function calls (eg. cold starts)

Challenges

“ fission

workflows

Event Store persist all events
related to the workflows.
Controller watches active
workflows and execute
scheduled actions.

Scheduler decides which
actions need to be taken based
on current state.

fISSIOI‘l
T

Fission Workflow

—
T

[Event Store H Controller }—[Scheduler J

Example: Photo Transform Workflow

SZaRRIR] .. LN S——

- Data-intensive, on-demand functions
- Several distinct computation steps for transformation

” %MM‘_“IMI' “J l‘““l“ﬂlﬁﬂ!Wv - H

Ll](

mhnililill

=
B
s
ﬂ.g;
e =
T =

Photo Transform Workflow

The Problem

Data (Transfer)

and lots of it!

Europe QC

L e

M S

World map: copyright FreeVectorMaps?cA'om

Europe I?C

Bl Us westpc B s @

-

S

M 5

-

A

Within a DC US West DC — Europe DC ﬂ\,
Bandwidth Cost [1] | € 0.00 €0.09/1GB ' 3
¥

[1] https://aws.amazon.com/ec2/pEici

~

World map: copyright FreeVectorMaps?r?om

Within a DC

US West DC — Europe DC 1\,

Bandwidth Cost [1]

€ 0.00

€0.09/1GB

Latency [2]

~1 ms

~158 ms

[1] https://aws.amazon. com/ecZ/gcmg .
[2] Gandhi, A., & Chan, J. (2015). Analyzing the Network for AWS Distributed Cloud Computing.

ACM SIGMETRICS Performance Evaluation Review

World map: copyright FreeVectorMaps?ceom

Naive Approach

Naive Approach: expensive and slow!

Color Task can only start after
controller receives the data!

Costs £ 0.09 * 4 =€ 0.36 per GB
Latency ~158 ms * 4 = ~632 ms

18

Solution

Keep the data - the intermediate results - in the same datacenter.

19

Approach: direct pipelining

T e

Where to direct the output? »

@
When to direct the output? Sender
and receiver need to synchronize?

What happens in case of failures?

-y

Approach: “"Intermediate Result” Store

“Intermediate Result” = Promise

A promise holds a (future) value; API:

o Get) Returns the value or error
e Resolve(value) Makes Get() return VALUE
e Reject(error) Makes Get() throw ERROR

Optionally: watch promise

22

“Distributed” Promises

e Promises across the context of a single process

e “Promises allow a caller to run in parallel with a call and to pick
up the results of the call, including any exceptions it raises.”

o Liskov ‘88, Distributed Programming in Argus

o Liskov and Shrira ‘88, Promises: Linguistic Support for
Efficient Async Procedure Calls in Distributed Systems

23

Promises in the FaaS Function model

Deployed I | ‘

Await:

- Promise is resolved — function starts executing.
- Promise is rejected — function fails without executing

24

Approach: Promise Store

Approach: Promise Store

J
Costs £ 0.09* 2 =€ 0.18 per GB ﬂ

Latency ~158 ms * 2 =~316 ms

Difference \w naive: 2 trips / 50%

Dual Optimization Problem

Computation: where do we execute the functions?

Data: where do we store the promises?

How do computation and data placements influence each other?

How to optimize the overall performance in presence of these two factors?

27

The use of promises is 3
promising candidate for
data-intensive functions
In Faas.

Thank you!

n https://ffission.io/ - https://fission.io/workflows

u @erwinvaneyk

@¢ erwin@platform9.com

<

PLATFORM®@

29

https://fission.io/
https://fission.io/
https://twitter.com/erwinvaneyk
mailto:erwin@platform9.com

Additional Slides

30

Kubernetes is eating the resource orchestration ecosystem.

AWS Container Services

Growth Rate

Q1 Q2 Q3 Q4

@ KUBERNETES @ MESOS @ RANCHER @ OPENSHIFT

http://get.cloudability.com/ebook-state-of-cloud-2018.html

31

“Distributed” Promises

e Promises across the context of a single process

e See:the Argus system

o Liskov ‘88, Distributed Programming in Argus

o Liskov and Shrira ‘88, Promises: Linguistic Support for
Efficient Async Procedure Calls in Distributed Systems

32

