
Serverless Operations
From dev to production

Erwin van Eyk

Why serverless computing?

�2

Development	Model

High-level	abstractions	

Pre-provided	integrations		

Language-agnostic

Pay	for	what	you	use	

No	upfront/periodic	costs	

Granular	billing

Cost	ModelOperational	Model

Minimal	operational	logic	

“Infinite”	autoscaling	

Built-in	tooling:	monitoring,	
tracing,	health	checking,	etc.	

Function-as-a-Service (FaaS) in a nutshell

�3

Operator

Operates

users

Triggers	function		
executions

Function	Instance(s)Function	Instance(s)Function	Instance

Deploys

FaaS	platform

helloworld.py

Developer

Creates/updates	functions

…for	which	we	need	structured	operational	processes.

Serverless users use more functions…

�4source:	https://thenewstack.io/what-aws-lambdas-performance-stats-reveal/

Pe
rc
en

ta
ge
	o
f	A

W
S	
La
m
bd

a	
us
er
s	(
%
)

0%

13%

25%

38%

50%

Number	of	AWS	Lambda	funcYons

1-10 11-100 101-1000 >1000

https://thenewstack.io/what-aws-lambdas-performance-stats-reveal/

The traditional DevOps lifecycle

�5Operation	LoopDevelopment	Loop

Production	LoopDevelopment	Loop

The traditional DevOps lifecycle

�6

serverless

What	are	good	practices	(specifically)	for	serverless	operations?

Development Loop

�7

code, test.

Keep the development loop fast

�8

Developing	and	testing	within	the	production-level	cloud	platform	can	be	slow.

image	source:	https://xkcd.com/303/

https://xkcd.com/303/

Limitations of online serverless development

�9

• Most	cloud	providers	offer	online	editors	for	functions.	
• Great	for	getting	started.	
• Limitations:	

• Limited	functionality	
• Missing	typical	IDE	functionality	
• Minimal	version	control

Develop locally

�10

Many	(third-party)	projects	aim	to	improve	the	local	development	experience:	

• AWS	SAM—https://aws.amazon.com/serverless/sam/	
• Serverless	Framework—https://github.com/serverless/serverless	
• Azure	Core	Tools—https://github.com/Azure/azure-functions-core-tools	

https://aws.amazon.com/serverless/sam/
https://github.com/serverless/serverless
https://github.com/Azure/azure-functions-core-tools

Test locally (1): FaaS emulators

�11

Speed	up	testing	by	deploying	a	local	FaaS	emulator.	

Emulators	exist	for	most	major	FaaS	providers:	
• Azure	Function	Core	Tools—https://github.com/Azure/azure-functions-core-tools	
• Google	Cloud	Function	Emulator—https://cloud.google.com/functions/docs/emulator	
• serverless.com	emulator—https://github.com/serverless/emulator	
• AWS	SAM	local—https://github.com/awslabs/aws-sam-cli	
• Docker	Lambda—https://github.com/lambci/docker-lambda

https://github.com/Azure/azure-functions-core-tools
https://cloud.google.com/functions/docs/emulator
https://github.com/serverless/emulator
https://github.com/awslabs/aws-sam-cli
https://github.com/lambci/docker-lambda

Test locally (2): cloud emulators

�12

Attempts	to	emulate	FaaS	and	related	services:	
• localstack—https://github.com/localstack/localstack	
• AWS	SAM	local—https://github.com/awslabs/aws-sam-cli	

⚠	Can	become	a	time	sink	to	get	and	keep	working.

https://github.com/localstack/localstack
https://github.com/awslabs/aws-sam-cli

Test locally (3): open-source FaaS platforms

�13

Open-source	FaaS	platforms	allow	you	to	fully	replicate	the	platform	locally.	

source:	https://github.com/cncf/wg-serverless

https://github.com/cncf/wg-serverless

Live-reloading

�14

Automate	function	updates	to	provide	instant	“frontend”-like	feedback.

Live-reloading in FaaS platforms

�15

DIY	basic	live-reloading:	

Or,	built-in:

now

Operation Loop

�16

build.

Automated, reproducible builds

�17

deployable	function(s)function	source(s)

•resolving	dependencies	
•compiling	source	code	
•packaging	assets	
•…

or

Operation Loop

�18

test.

Comprehensive testing in a serverless world

�19

• Avoid	hard-coding	service-related	details.	
• Fully	isolate	the	testing	from	production.	

• Set	limits	and	alerts	(for	run-away	functions!).

unit	tests

integration	tests

e2e	tests

test	3

test	1

test	2

myFunc.py

ML	Engine

PubSub

Blob	Storage

Operation Loop

�20

release.

GitOps

�21

“Operations	by	pull	request"

	

CD	tooling

Developer

pullspushes	changes

https://www.weave.works/technologies/gitops/

Imperative configuration…

�22

deploy.sh

…vs. declarative configuration

�23

deploy.sh

Examples of projects focusing on declarative configurations

�24

AWS	SAM Serverless	framework Most	open-source	FaaS	platforms

Operation Loop

�25

deploy.

warm	execution

Understanding the FaaS deployment process

�26

Router

Resource	Manager

Function	Instance

Function	Storecold	start

Deployer

event	2

event	1

Caching in deployed function instances

�27

Functions	are	stateless,	but	can	maintain	non-persistent	state.	

Use	cases:	
• caching	results	
• preparing	upstream	services	
• initialising/maintaining	database	connections

Router Function	InstanceCache

Run	function	init

Canary Deployments

�28

Canary Deployments (2)

�29
https://blog.fission.io/posts/automated-canary-deployments/

https://blog.fission.io/posts/automated-canary-deployments/

Canary Deployments (3)

�30https://hackernoon.com/canary-deployments-in-serverless-applications-b0f47fa9b409	
https://istio.io/blog/2017/0.1-canary/	

Service	mesh-based	FaaS	platforms	(e.g.,	knative)AWS	CodeDeploy	+	AWS	Lambda

https://hackernoon.com/canary-deployments-in-serverless-applications-b0f47fa9b409
https://istio.io/blog/2017/0.1-canary/

Operation Loop

�31

operate, monitor.

Monitoring, tracing, logging

�32

Serverless	platforms	help	with…	
• metric	monitoring	(system-level	and	some	user-level	metrics)	
• log	aggregation	
• distributed	tracing	

Potential	pitfalls:	
• (implicit)	costs	
• proprietary	formats	
• vendor	lock-in

Serverless	applications	still	need	to	be	monitored

Memory allocation is linked to CPU/IO shares

�33source:	https://epsagon.com/blog/how-to-make-lambda-faster-memory-performance-benchmark/

Memory	allocation	of	the	AWS	Lambda	function	

avg.	runtime	(ms)

Average	runtime	calculating	Fibonacci	numbers	1	to	100	

https://epsagon.com/blog/how-to-make-lambda-faster-memory-performance-benchmark/

Never scaling down to zero

�34

Keep	function	instances	alive	at	all	times	to	avoid	
(most)	cold	starts.	

• Not	well	supported	in	managed	FaaS	platforms.	
• Azure	supports	minimal	instances	in	its	
“premium	plan”.	

• Well	supported	in	open-source	FaaS	platforms.	

FUNCTIONS

• In	theory,	languages	should	perform	similar.	
• In	practice,	maturity	of	languages	differs.

The language can impact performance

�35Lee, Hyungro, Kumar Satyam, and Geoffrey Fox. "Evaluation of production serverless computing environments." 2018
IEEE 11th International Conference on Cloud Computing (CLOUD). IEEE, 2018.

Conclusion

�36

Lessons	learned:	
1. Keep	the	serverless	development	loop	as	fast	as	possible.	
2. Prefer	declarative	over	imperative	configuration.	
3. Automate	the	build	and	deployment	process	(canaries!).	
4. Use	the	function	deployment	process	to	your	advantage.	
5. Be	wary	of	performance	effects	of	function	configuration	changes.	

Takeaway:	The	DevOps	lifecycle	is	(still)	relevant	in	a	serverless	world!	

 http://fission.io + https://github.com/fission

Slack http://slack.fission.io/

Twitter @fissionio

Thanks!

�37

Erwin van Eyk
Software Engineer @ Platform9 Systems

Chair @ SPEC CLOUD RG Serverless
Researcher @ AtLarge Research

@erwinvaneyk
erwin@platform9.com
https://erwinvaneyk.nl

http://fission.io
https://github.com/fission
http://slack.fission.io/

Further reading

�38

• More	on	FaaS	internals	and	performance:	

• My	talk	at	KubeCon	China	2018:	https://erwinvaneyk.nl/kubecon-china-2018-serverless-performance/	

• Or,	the	blogpost	derived	from	that	talk:	https://www.infoq.com/articles/serverless-performance-cost	
• Wang,	Liang,	et	al.	"Peeking	behind	the	curtains	of	serverless	platforms."	2018.																																			

https://www.usenix.org/system/files/conference/atc18/atc18-wang-liang.pdf	

• More	on	serverless	concepts:		

• Serverless	is	More	(2018)	-	which	covers	the	emergence,	current	state,	and	future	of	serverless:							
https://erwinvaneyk.nl/internet-computing-serverless-is-more/	

• CNCF	Serverless	WG	-	Serverless	Overview	Whitepaper	and	serverless	landscape	(2017):																		
https://github.com/cncf/wg-serverless	

http://erwinvaneyk.nl/kubecon-china-2018-serverless-performance/
https://www.infoq.com/articles/serverless-performance-cost
https://www.usenix.org/system/files/conference/atc18/atc18-wang-liang.pdf
http://erwinvaneyk.nl/internet-computing-serverless-is-more/
https://github.com/cncf/wg-serverless

Additional Slides

�39

Who is who in serverless computing

�40

Cloud	user

Cloud	operator

Application	user

• Or	just	the	“(software)	developer”	in	the	context	of	this	talk.	

• Uses	cloud	(and	serverless)	services	to	develop	applications.	

• Examples:	Spotify,	Netflix,	you(?)…	

• Provides	cloud	(and	serverless)	services	to	cloud	users.	

• Can	be	a	public	or	private,	in-house	cloud	provider.			

• Examples:	AWS,	Platform9,	internal	DevOps	team…	

• Generates	events	which	trigger	the	execution	of	(cloud)	applications.		

• Can	be	downstream	services,	or	actual	(physical)	users.	

• Examples:	frontend/UI,	workqueue…			

Serverless in a nutshell

�41

cloud	operator	manages… cloud	user	(you)	manages…

Hardware	

Virtualization

Cluster	Resource	Mgt

	Application	
Middleware

Application

bare-metal

Hardware	

Virtualization

Cluster	Resource	Mgt

	Application	
Middleware

Application

IaaS

Hardware	

Virtualization

Cluster	Resource	Mgt

	Application	
Middleware

Application

serverless

Hardware	

Virtualization

Cluster	Resource	Mgt

	Application	
Middleware

Application

