Serverless Operations
From dev to production

Erwin van Eyk

@Large Researc 2

7, A Iy | [RG Clouq

Why serverless computing?

Operational Model Cost Model Development Model
Minimal operational logic Pay for what you use High-level abstractions
“Infinite” autoscaling No upfront/periodic costs Pre-provided integrations
Built-in tooling: monitoring, Granular billing Language-agnostic

tracing, health checking, etc.

Function-as-a-Service (FaaS) in a nutshell

Developer

A

python”
4

helloworld.py

Creates/updates functions Deploys

—— .
FaaS platform [o I
_ Function Instance

‘

Operates Triggers function
executions

Operator users

Serverless users use more functions...

50%

38%

25% +—

B I I
0% -

11-100 101-1000 >1000

Percentage of AWS Lambda users (%)

Number of AWS Lambda functions

...for which we need structured operational processes.

source: https://thenewstack.io/what-aws-lambdas-performance-stats-reveal/

https://thenewstack.io/what-aws-lambdas-performance-stats-reveal/

The traditional DevOps lifecycle

test
)ouila\ — \A
'te,S{'- 7 \/ﬂ[emm
V /\\\ \/
e jol
Com Y, C* ploy

ObL/AtR + mon 4o,

Development Loop Operation Loop

The serverless DevOps lifecycle

What are good practices (specifically) for serverless operations?

Development Loop

code, test.

Keep the development loop fast

Developing and testing within the production-level cloud platform can be slow.

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE’S COMPILING.”

HEY! GETBACK Y™
TOWORK!

%

image source: https://xkcd.com/303/

https://xkcd.com/303/

Limitations of online serverless deve

e Most cloud providers offer online editors for functions.
e Great for getting started.
e Limitations:

e Limited functionality

e Missing typical IDE functionality

e Minimal version control

functions ggailey777- TimerTriggerCsharp1

functions-ggailey777 - TimerTriggerCSharpl

Lambda > Functions > Calc

Qualifiers v m Actions ~
H Code Configuration Triggers Monitoring
F Code entry type Edit code inline v
1 console.log('Loading the Calc function');
a 47 2
- ¥ 3 - exports.handler = function(event, context) {
& Marsa, 4 console.log('Received event:', JSON.stringify(event, null, 2));
. . S~ if (event.a === undefined || event.b === undefined || event.op === undefined) {
4 = + 6 context.fail("400 Invalid Input");
+ PSs o i v 7}
8
e 47, Ou 9 var res = {};
L] 10 res.a = Number(event.a);
° Ze:10 11 res.b = Number(event.b);
12 res.op = event.op;

(] Cloud Functions

Name

function-1
Memory allocated

256 MB
Trigger

HTTP trigger

URL

& Create function

https://us-central1- .cloudfunctions.net/function-1

Source code

® Inline editor
ZIP upload
ZIP from Cloud Storage
Cloud Source repository

Runtime

Python 3.7

def hello http(request):
i TTP Cloud Function.

request_json = request.
if request_json and 'me
name = request json
else:
name = 'World
return f'Hello, {name}

Function to execute

hello_http

et _json()
e

n request_json:
je']

Develop locally

Many (third-party) projects aim to improve the local development experience:

e AWS SAM—https://aws.amazon.com/serverless/sam/

e Serverless Framework—https://github.com/serverless/serverless

e Azure Core Tools—https://github.com/Azure/azure-functions-core-tools

10

https://aws.amazon.com/serverless/sam/
https://github.com/serverless/serverless
https://github.com/Azure/azure-functions-core-tools

Test locally (1): FaaS emulators

Speed up testing by deploying a local FaaS emulator.

Emulators exist for most major FaaS providers:

e Azure Function Core Tools—https://github.com/Azure/azure-functions-core-tools

e Google Cloud Function Emulator—https://cloud.google.com/functions/docs/emulator
e serverless.com emulator—https://github.com/serverless/emulator

e AWS SAM local—https://github.com/awslabs/aws-sam-cli

e Docker Lambda—https://github.com/lambci/docker-lambda

11

https://github.com/Azure/azure-functions-core-tools
https://cloud.google.com/functions/docs/emulator
https://github.com/serverless/emulator
https://github.com/awslabs/aws-sam-cli
https://github.com/lambci/docker-lambda

Test locally (2): cloud emulators

Attempts to emulate FaaS and related services:
e |ocalstack—https://github.com/localstack/localstack
e AWS SAM local—https://github.com/awslabs/aws-sam-cli

I Can become a time sink to get and keep working.

12

https://github.com/localstack/localstack
https://github.com/awslabs/aws-sam-cli

Test locally (3): open-source FaaS platforms

Open-source FaaS platforms allow you to fully replicate the platform locally.

CNCF Serverless Landscape
2019-05-19T02:14:19Z fe939f1

See the serverless interactive display at s.cncf.io

intrinsi D
intrinsic | | “Protego r‘a
PURESEC

‘M’ ¥ dashbird .u;. A @ IOlpipe ||ro|fja ® python-A g\?’ 3 SICMA H%’

¢
Epsagon | | gatenay . SCAR

Security

APEX @ \/
Architect alice AWS SAM Claudiajs FLOGO

Hosted Installable

Framework

AppScale | | @osearen | [{3 fission ‘%fn ‘

Knative

®| [| | | @]

LunchBadger OPENFARS

Serverless computing refers to a new model of cloud native =1 CLOUD NATIVE
computing, enabled by architectures that do not require server Pulandsca pe
management to build and run applications. This landscape illustrates
a finer-grained deployment model where applications, bundled as one <7 CLOUD NATIVE
or more functions, are uploaded to a platform and then executed, L5l COMPUTING FOUNDATION
scaled, and billed in response to the exact demand needed at the

moment ‘ Redp01nt

source: https://github.com/cncf/wg-serverless 13

https://github.com/cncf/wg-serverless

Live-reloading

Automate function updates to provide instant “frontend”-like feedback.

127.0.0.1:4000/posts/

Failed to open page ruby on rails - bu... NU - Het laatst... All Posts — Defe...

DEFERRED POSTS

= menu

<chtiecture-conf-going-faster.md" 10L, 176C written

Configuration file: /Users/erwin/Github/website/_config.yml A P
Source: /Users/erwin/Github/website ll OStS
Destination: /Users/erwin/Github/website/_site

Incremental build: disabled. Enable with --incremental

Generating. .. 2019

done in 0.957 seconds.

Auto-regeneration: enabled for '/Users/erwin/Github/website'’

Configuration file: /Users/erwin/Github/website/_config.yml Going FaaSter: Cost-Performance Optimizations of Serverless on

Server address: http://127.0.0.1:4000/ Kubernetes @ Serverless Architecture Conference 2019
Server running... press ctrl-c to stop. FOOBAR

Regenerating: 1 file(s) changed

Four Techniques Serverless Platforms Use to Balance Performance

14

Live-reloading in FaaS platforms

DIY basic live-reloading:

fswatch /my/serverless/project

deploy_dev_function.sh

Or, built-in:

Show your work. Live.

Netlify Live is a hosted service that continually runs your dev command, just like you
do locally, watching for changes. The result is an instant preview you can share with
your entire team, with live updates as code and content change.

& wip-thanosjs.netlify.live

&> netlify

8log

Introducing "now dev " - Serverless, on localhost

gy Nerenraiicn g Leo Lamprecht Steven Connor Davis

@ e @ smesasion

Now was born out of the idea that deploying a website could be much simpler. You only have to run a

single command: ~thatis all.

With our GitHub and GitLab integrations, we enabled deploying on every ,and teams to

manage staging and production by simply merging pull requests.

Not only did Now 2.0 make deployments effortless, it made them scalable and global by default. Thanks.
to monorepo support, you could develop static websites and within the same.
repository.

Today, we are excited to announce one command to run it all on localhost: “now dev .

A ZEIT

Fission

The Fission Blog

Live-Reload in Fission: Instant feedback on your
Serverless Functions

October 16,2018

Accelerating feedback loops are an important devops principle: the sooner you find a bug, the cheaper it
isto fixit

While developing your application, you're typically going through a cycle: write code, build, deploy into a
test environment, run tests, fix, repeat. The build and deploy stages of this cycle are idle, unproductive
time where you're simply waiting. As a project grows, these stages get slower and slower. Once they're
slow enough, you end up context switching to another task, while waiting, and that makes it harder to get
back into the right context and fix any bugs you find in testing

Fission comes built-in with live-reload, a feature that drops the time from code to running tests to a few
seconds. Fission is the first open source serverless function framework to do this.

fission

15

Operation Loop

Automated, reproducible builds

e resolving dependencies
D > ° compili-ng source code
e packaging assets

function source(s) deployable function(s)

17

Operation Loop

test.

test
——

Comprehensive testing in a serverless world

Blob Storage

test 2

v

integration tests

— myFunc.py

A

@

v

O

\ ML Engine

S

e Avoid hard-coding service-related details.

e Fully isolate the testing from production.

e Set limits and alerts (for run-away functions!).

test 3

19

Operation Loop

CIEERED

\/ﬂlemfe
4

“Operations by pull request”

pusheschanges puHs
0 glt CD tooling

Developer

21

https://www.weave.works/technologies/gitops/

Imperative configuration...

deploy.sh

fission environment create ——name python ——image fission/python-env

fission function create ——name counter ——env python —--src ./counter.py
fission trigger create ——name counter—get ——-method GET ——url /counter

22

...VS. declarative configuration

apiVersion: fission.io/vl
kind: Environment
metadata:

name: python
namespace: default

deploy.sh

kubectl apply —f counter.yaml

apiVersion: fission.io/vl

kind: Function

metadata: fission spec init
name: counter fission spec apply

environment:
name: python
namespace: default

Examples of projects focusing on declarative configurations

aWS serverless / examples ®Watch~ 201 Hstar | 4,970 ¥ Fork 1,666
)

Products Solutions Pricing Documentation Learn Partner Network AWS Marketplace Explore More

<> Code Issues 58 Pull requests 17 Projects 0 Wiki Insights

Branch: master v examples / aws-node-rest-api-with-dynamodb / serverless.yml Find file Copy path @ Ku b e I es S
) ozviliwang bugfix - Internal server error

Bo - @ 78294c on Oct 11, 2017
n ‘ APACHE)
&% OpenwWhisk

AWS Serverless Application Model Overview Resources FAQs

6 contributors

AWS Serverless Application Model
80 lines (71 sloc) 1.68 KB Raw Blame History [J »° 1
Build serverless applications in simple and clean syntax servicer serverlessTrestoapith ey nanedt

frameworkVersion: ">=1.1.0 <2.0.0"

provider:

name: aws

runtime: nodejs6.10
environment:

DYNAMODB_TABLE: ${self:service}-s{opt:stage, self:provider.stage}

The AWS Serverless Application Model (SAM) is an open-source framework for building serverless applications. It iamRoleStatements: @ m
- Effect: AlL

provides shorthand syntax to express functions, APls, databases, and event source mappings. With just a few lines A(ti:". o m

per resource, you can define the application you want and model it using YAML. During deployment, SAM - dynamodb: Query

transforms and expands the SAM syntax into AWS CloudFormation syntax, enabling you to build serverless

- dynamodb:Scan
applications faster.

- dynamodb:GetItem
- dynamodb:PutTtem

fission

d with building SAM-based applicati he AWS S s id bda-lik _ dymanodb: dpdatetten
To get started with building SAM-based applications, use the AWS SAM CLI. SAM CLI provides a Lambda-like ~ dynamodb:DeleteItem
execution environment that lets you locally build, test, and debug applications defined by SAM templates. You can Resource: “arn:aws:dynamodb: ${opt:region, self:provider.region}:x:table/s{self:provider.environment.DYNAMODB_TABLE}"
also use the SAM CLI to deploy your applications to AWS.

functions:
SAM and SAM CLI are open-sourced under the Apache 2.0 license. You can contribute new features and create:

handler: todos/create.create
enhancements to SAM on GitHub or SAM CLI on GitHub. events:
_ htip:

AWS SAM Serverless framework Most open-source Faa$ platforms

24

Operation Loop

deploy.

(AQ/O/Oy
</

Understanding the FaaS deployment process

cold start

event 1 T
> :
m | Function Instance ‘
—_—>

event 2

warm execution

26

Caching in deployed function instances

Functions are stateless, but can maintain non-persistent state.

Use cases:
e caching results

e preparing upstream services

e initialising/maintaining database connections Run function init

—_— m — Function Instance

—

27

Canary Deployments

oLb

VERSION
(INNCOMIN G

REQULESTS

GeT
METRICS

FROMETHE S S| Ccanary

QET
SUCCESS CONTROLLER,

RATE 28

Canary Deployments

Prometheus Alerts Graph Status ~ Help

& Enable query history

Load time: 808ms
Resolution: 3s
Total time series: 2

rate(fission_function_calls_total{name=~"func-v1|func-v2",cached="true"}[2m])

- insert metric at cursor - j

Graph Console

- 15m + « | 2018-09-25 09:18 » O stacked

29
https://blog.fission.io/posts/automated-canary-deployments/

https://blog.fission.io/posts/automated-canary-deployments/

Canary Deployments

LATEST TOP 2.0 POD REACT CRYPTO DEV

(P HELEERLIOON

Canary deployments in Serverless
applications

Mar 25,2018 - 6 min read

‘ﬁ pavid

In this post we’ll walk through different AWS services and features that enable
canary deployments of Lambda Functions, although you can check the Canary

Deployments Serverless Plugin if you just want to safely deploy your functions

and you are not interested about the details.

Deployment in a Serverless application is an all-at-once process, when we
release a new version of any of our functions, every single user will hit the
new version. We must be really confident about the new version, because if
anything goes wrong and the function contains an error, all of our users will
be experiencing ugly issues. However, AWS recently introduced a new feature
that can make our deployment process much more reliable and secure: traffic

shiftino 1ising aliages

GET PUBLISHED

Istio 1.1

2019 Posts
2018 Posts
2017 Posts

Mixer and the SPOF Myth
Mixer Adapter Model
Announcing Istio 0.2

Using Network Policy with
Istio

Canary Deployments using
Istio

Using Istio to Improve End-
to-End Security

Introducing Istio

Subscribe

ISTIO / BLOG/ 2017 POSTS / CANARY DEPLOYMENTS USING ISTIO

Canary Deployments using Istio

BY FRANK BUDINSKY | [JUNE 14, 2017 (UPDATED ON MAY 16, 2018) | (© 9 MINUTE READ

@ This post was updated on May 16, 2018 to use the latest version of the traffic management model.

One of the benefits of the Istio project is that it provides the control needed to deploy canary services. The idea
behind canary deployment (or rollout) is to introduce a new version of a service by first testing it using a small
percentage of user traffic, and then if all goes well, increase, possibly gradually in increments, the percentage while
simultaneously phasing out the old version. If anything goes wrong along the way, we abort and rollback to the
previous version. In its simplest form, the traffic sent to the canary version is a randomly selected percentage of
requests, but in more sophisticated schemes it can be based on the region, user, or other properties of the request.

Depending on your level of expertise in this area, you may wonder why Istio’s support for canary deployment is even
needed, given that platforms like Kubernetes already provide a way to do version rollout and canary deployment.
Problem solved, right? Well, not exactly. Although doing a rollout this way works in simple cases, it’s very limited,
especially in large scale cloud environments receiving lots of (and especially varying amounts of) traffic, where
autoscaling is needed.

Canary deployment in Kubernetes

As an example, let’s say we have a deployed service, helloworld version v1, for which we would like to test (or simply
rollout) a new version, v2. Using Kubernetes, you can rollout a new version of the helloworld service by simply

AWS CodeDeploy + AWS Lambda

Service mesh-based FaaS platforms (e.g., knative)

https://hackernoon.com/canary-deployments-in-serverless-applications-b0f47fa9b409 30

https://istio.io/blog/2017/0.1-canary/

https://hackernoon.com/canary-deployments-in-serverless-applications-b0f47fa9b409
https://istio.io/blog/2017/0.1-canary/

Operation Loop

operate, monitor.

A
itor

Monitoring, tracing, logging

Serverless applications still need to be monitored

Serverless platforms help with...
e metric monitoring (system-level and some user-level metrics)
e |og aggregation

e distributed tracing

Potential pitfalls:
e (implicit) costs
e proprietary formats

e vendor lock-in
32

Memory allocation is linked to CPU/IO shares

avg. runtime (ms)

Average runtime calculating Fibonacci numbers 1 to 100

400 |
375 ©
350 |\
325
300
275
250
225
200
175
150
125
100
75
50
25

&

128MB 192MB 256MB 512MB 768MB 1024MB 1536MB 2048MB 2560MB 3008MB

Memory allocation of the AWS Lambda function

source: https://epsagon.com/blog/how-to-make-lambda-faster-memory-performance-benchmark/

33

https://epsagon.com/blog/how-to-make-lambda-faster-memory-performance-benchmark/

Never scaling down to zero

Keep function instances alive at all times to avoid

AEESEES
(most) cold starts.)%, >

sz\?m'Auvz

&

e Not well supported in managed FaaS platforms.

e Azure supports minimal instances in its
“premium plan”.

e Well supported in open-source FaaS platforms.

34

The language can impact performance

e |n theory, languages should perform similar.
e |n practice, maturity of languages differs.

©

-

o

T Language
‘2 83’(5) EEE Nodejs
— 0.20 M B Csharp
wn

8 0.15 B Python
o 010 B java
= 0.05 Swift
= 0.00 B swi
= AWS Azure IBM Google

e

Lee, Hyungro, Kumar Satyam, and Geoffrey Fox. "Evaluation of production serverless computing environments." 2018

35
IEEE 11th International Conference on Cloud Computing (CLOUD). IEEE, 2018.

Conclusion

Lessons learned:
1. Keep the serverless development loop as fast as possible.
2. Prefer declarative over imperative configuration.
3. Automate the build and deployment process (canaries!).
4. Use the function deployment process to your advantage.

5. Be wary of performance effects of function configuration changes.

Takeaway: The DevOps lifecycle is (still) relevant in a serverless world!

36

Thanks!

i #fission
Slack

Twitter

@fissionio

Erwin van Eyk

Software Engineer @ Platform9 Systems
Chair @ SPEC CLOUD RG Serverless
Researcher @ AtLarge Research

@erwinvaneyk
erwin@platform9.com
https://erwinvaneyk.nl

http://fission.io
https://github.com/fission
http://slack.fission.io/

Further reading

e More on FaaS internals and performance:

e My talk at KubeCon China 2018: https://erwinvaneyk.nl/kubecon-china-2018-serverless-performance/

e Or, the blogpost derived from that talk: https://www.infoqg.com/articles/serverless-performance-cost

e Wang, Liang, et al. "Peeking behind the curtains of serverless platforms." 2018.
https://www.usenix.org/system/files/conference/atc18/atc18-wang-liang.pdf

e More on serverless concepts:

e Serverless is More (2018) - which covers the emergence, current state, and future of serverless:
https://erwinvaneyk.nl/internet-computing-serverless-is-more/

e CNCF Serverless WG - Serverless Overview Whitepaper and serverless landscape (2017):
https://github.com/cncf/wg-serverless

38

http://erwinvaneyk.nl/kubecon-china-2018-serverless-performance/
https://www.infoq.com/articles/serverless-performance-cost
https://www.usenix.org/system/files/conference/atc18/atc18-wang-liang.pdf
http://erwinvaneyk.nl/internet-computing-serverless-is-more/
https://github.com/cncf/wg-serverless

Additional Slides

Who is who in serverless computing

Cloud user

Cloud operator

Application user

e Or just the “(software) developer” in the context of this talk.

e Uses cloud (and serverless) services to develop applications.

e Examples: Spotify, Netflix, you(?)...

e Provides cloud (and serverless) services to cloud users.
e Can be a public or private, in-house cloud provider.

e Examples: AWS, Platform9, internal DevOps team...

e Generates events which trigger the execution of (cloud) applications.

e Can be downstream services, or actual (physical) users.

e Examples: frontend/Ul, workqueue...
40

Serverless in a nutshell

cloud operator manages... 3(3(cloud user (you) manages...
Application Application Application Application
Application Application Application Application
Middleware Middleware Middleware Middleware

| Cluster Resource Mgt Il Cluster Resource Mgt H Cluster Resource Mgt |l Cluster Resource Mgt |

Virtualization Virtualization Virtualization Virtualization

bare-metal laaS kubernetes serverless 4

