
The Design, Productization, and Evaluation
of a

Serverless Workflow-Management System

 Erwin van Eyk

�1

Cloud Computing

Van Eyk, Erwin, et al. "Serverless is more: From paas to present cloud computing." IEEE Internet Computing 22.5 (2018): 8-17.
!2

developer

deploys applications on

Datacenter

cloud	operatorReduces complexity

Improves resource usage

!3

Complexity and resource utilization remain key challenges

Serverless Computing is a form of cloud computing which allows
users to run event-driven and granularly-billed applications without
having to deal with operational logic.

van Eyk, Erwin, et al. "The SPEC cloud group's research vision on FaaS and serverless architectures." WOSC, 2017. !4

Division of operational concerns

�5

cloud	operator	manages… developer	manages…

Hardware	

Virtualization

Cluster	Resource	Mgt

	Application	
Middleware

Application

DIY

Hardware	

Virtualization

Cluster	Resource	Mgt

	Application	
Middleware

Application

Cloud	/	IaaS

Hardware	

Virtualization

Cluster	Resource	Mgt

	Application	
Middleware

Application

serverless

The “Serverless” market

source: https://www.marketsandmarkets.com/Market-Reports/serverless-architecture-market-64917099.html

currently: $ 5 billion
by 2023: $ 15 billion

(predicted)
!6

Serverless Computing

Cloud Computing

Function-as-a-Service
(FaaS)

van Eyk, Erwin, et al. "The SPEC cloud group's research vision on FaaS and serverless architectures." WOSC@MIDDLEWARE, 2017.
!7

Function-as-a-Service (FaaS)

input
cat

output
ImageRecognizer

a serverless function
!8

Function-as-a-Service (FaaS) in a nutshell

�9

operator

Operates

users

Triggers	function		
executions

Function	Instance(s)Function	Instance(s)Function	Instance

Deploys
FaaS	platform

ImageRecognizer.py

developer

Creates/updates	functions

Van Eyk, Erwin, et al. “The SPEC-RG Reference Architecture for FaaS: From Microservices and Containers to Serverless Platforms.”
IEEE Internet Computing (2019, under submission).

New technology, new problems

• Undefined terminology

• Lacking fundamental models and principles

• Absent real-world data and workload traces

• Missing well-established systems, tooling and processes

!10

Conceptual	problems	(in	
related	domains)	

Emergence	of	serverless	

Scheduling	in	FaaS

and others
serverless

!11

High-level,	community	
problems	

Terminology	

Challenges	&	perspectives	

FaaS	reference	architecture

A multi-level approach

A	specific	conceptual	and		
technical	problem	

Serverless	function		
composition	

This thesis!

Serverless function composition

!12

“Orchestrating existing functions into new more complex, composed functions.”

RQ: How to support serverless function composition through a distributed systems approach?

SpanishImageRecognizer

ImageRecognizer Translator

cat

gatto

Requirements analysis

!13

RQ1: What are the requirements to support serverless function compositions?

Survey	of	use	cases

• Improves existing use cases

• Enables long-running processes

Workload	characteristics

• Frequent executions

• Short runtimes (seconds)

• Long-tailed runtimes (cold starts!)

Constraints

Requirements

Requirements

!14

1. Support long-running processes.

2. Minimize performance overhead.

3. Ensure reliable executions.

4. Scale to frequent workflow
invocations.

(Summarised; see thesis for the complete requirements and constraints)

Constraints
1. Treat FaaS functions as black-boxes.

2. Rely only on common FaaS
functionality.

3. Follow the serverless function
development and execution model.

Surveying the State-of-the-Art

1. FaaS platforms

2. Serverless function composition approaches

3. Workflow management systems

4. Workflow languages

!15

RQ2: How do approaches for the composition of cloud functions compare?

!16

(1) FaaS platform survey

source: https://github.com/cncf/wg-serverless

(2) Approaches to function composition survey

1. Direct composition

2. Compiled composition

3. Coordinator-based composition

4. Event-driven composition

5. Workflow-based composition

!17

!18

Workflow-based composition

A

Workflow definition

B

(3+4) Survey of workflow systems and languages

• Most serverless-like WMS are closed-source.

• Workflow languages are often tightly coupled to the WMS.

• Workflow languages contain system-level assumptions.

• Reuse common language syntax and system architecture.

!19

Azure Logic Apps

AWS Step Functions

Serverless workflow management system

Design of a serverless workflow management system

Serverless Workflow Language

!20

RQ3: How to design a system for composing cloud functions?

SWL

(see thesis)

Fission Workflows

!21

12

4

3

Event sourcing and persistence
The workflows are stored as a sequence of events

Impact

- Retain the time dimension of the data

- Simple, append-only persistence model

Event store implementations

- In-memory

- NATS streaming

The workflow (invocation) controller

Impact

- Improves reliability

- Vital state remains confined to event store

Event
Store

EventSensor

PollSensor

Controller

Task	Queue

Scheduler

Job	Queue

Task	Executor

Integration with the FaaS platform

!24

Workflows can be executed as
any serverless function

Fission Workflows uses the
same user-level FaaS API

FaaS can support
workflow-specific functionality

(optional)

Workflow scheduling
Motivation: use workflows to mitigate cold starts of serverless functions.

!25

A

B

C

D

Not started

Started

Prewarming: predictively deploying serverless functions based on expected demand.

Finished

horizon policy

A

B

C

A D

B

C

D

Workflow scheduling
prewarm-all policy

!26

A

B

C

D

Not started

Started

Prewarmed

Finished
A

B

C

DA

B

C

B

C

DD

Prewarm all non-active tasks in the workflow

Workflow scheduling
prewarm-horizon policy

!27

A

B

C

D

Not started

Started

Prewarmed

Finished
A

B

C

A

B

C

D

B

C

DD

Prewarm all tasks that are “up next” in the workflow

Experimental evaluation of the prototype

!28

Goal: Evaluate the workflow system prototype based on the following metrics:

- Reliability

- Performance

- Cost

RQ4: How to evaluate systems for function composition experimentally?

Experimental setup

!29

Developing distributed systems is hard,
testing them is even harder.

Two types of experiments

• Isolated experiments

• Realistic experiments

SimFaaS: a FaaS emulator
Goal: versatile FaaS emulation, which scales (with negligible performance
overhead) well beyond the workloads in the other experiments.

!30

!31

Isolated experiment setup

Driver Node

Worker Node

Overview of the
isolated experiments

Fault tolerance experiments

• Unavailable event store

• Unavailable FaaS runtime

• Fail-stop crashes of Fission

Workflows with different
configurations

Scalability experiments

• Event store implementation

performance overhead

• Workflow submission

• Workflow throughput

• Workflow parallelism

• Workflow length

Scheduling experiments

!32

Fault-tolerance experiments

!33

Goal: Evaluate the fault-tolerance of the prototype under different failure
scenarios.

Scenarios evaluated:

• Unavailable event store

• Unavailable FaaS runtime

• Fail-stop crashes of Fission Workflows

!34

Fault-tolerance: crash of the controller

Scheduling experiments

!35

Goal: Evaluate the performance and resource consumption of the
(prewarm-focused) scheduling policies:

- horizon

- prewarm-horizon

- prewarm-all

Approach: Use SimFaaS to emulate and control cold starts and
resource usage.

!36

Performance of scheduling policies

!37

Resource consumption of scheduling policies

Realistic experiments

!38

Goal: evaluate the performance and cost of Fission Workflows under realistic
circumstances, comparing it to the state-of-the-art.

Google Cloud Composer Google Cloud Functions

FaaS platformWorkflow systemProvider

Google Cloud

Microsoft Azure

AWS

Fission (Workflows)

Azure Logic Apps

AWS Step Functions AWS Lambda

Azure Functions

!39

Realistic experiments setup

Chronos workload

!40

Realistic experiment: FaaS overhead

!41

Realistic experiment: performance

!42

Realistic experiment: cost

!43

!44

Process

~689 cups of coffee
!45

~59k lines of code

~150 hours of experiments
~105 GB of experiment data

10 publications
4 as lead author

60 citations

source: https://scholar.google.nl/citations?user=5l4JxcAAAAAJ&hl=nl&oi=ao (accessed June 2019)
!46

Internship @ Platform9
!47

Industry publications
!48

Conferences

Talks
!49

1. Workflows are key to enabling serverless function composition.

2. Fission Workflows demonstrates the possibilities of serverless
workflows; and highlights the opportunities of prewarming.

3. The prototype is on-par performance-wise, and cheaper than
the state-of-the-art.

4. Industry interest in the Fission Workflows product emphasises
the need for serverless workflow systems.

Conclusion

!50

More research is needed in serverless computing!

 https://github.com/fission

SimFaaS https://github.com/erwinvaneyk/simfaas

Thesis + slides https://erwinvaneyk.nl/thesis

Thanks!

�51

Erwin van Eyk
Software Engineer @ Platform9 Systems

Researcher @ AtLarge Research
Co-chair @ SPEC CLOUD RG Serverless

@erwinvaneyk
erwinvaneyk@gmail.com

https://erwinvaneyk.nl

https://github.com/fission
https://github.com/erwinvaneyk/simfaas
http://slack.fission.io/

!52

Additional Slides

Photo credits
- Empty datacenter: https://www.datacenterknowledge.com/manage/wave-data-center-consolidation-different-first-one

- Copyright of logos used (Google, AWS, Azure, SPEC RG CLOUD, TU Delft, Platform9, Python) belongs to the respective organizations

- Logo for SWL: https://pixabay.com/vectors/hexagon-symbol-gui-internet-2307350/

!53

https://www.datacenterknowledge.com/manage/wave-data-center-consolidation-different-first-one
https://pixabay.com/vectors/hexagon-symbol-gui-internet-2307350/

!54

Performance overhead of SimFaaS (1)

Performance overhead of SimFaaS (2)

!55

!56

Fault-tolerance: event store unavailability

!57

Fault-tolerance: FaaS runtime unavailability

!58

Fault-tolerance: crash of bundled workflow engine

!59

Fault-tolerance: crash of distributed workflow engine

!60

Fault-tolerance: crash of workflow engine
with an in-memory event store

!61

Performance overhead of event store implementations

!62

Scalability: workflow invocation submission

!63

Scalability: 1-task workflows

!64

Scalability: serial/long-running workflows

!65

Scalability: parallel workflows

!66

Resource consumption of scheduling policies

!67

Performance of scheduling policies

!68

Slowdown of the serverless workflow engines

!69

Cost breakdown of the evaluated serverless platforms

!70

Fission Workflow definition example

Survey of FaaS platforms

!71

Survey of composition approaches

!72

Survey of WMSs

!73

Survey of workflow languages

!74

Workflow definition lifecycle

!75

FaaS platform reference architecture

!76

Serverless function execution

!77

!78

SWL: data model

!79

Workflow Invocation

Workflow Definition

Task Run

SWL: execution model

!80

SWL: dynamic workflow support

!81

Fission Workflows monitoring support

!82

Fission Workflows tracing support

!83

Serverless scheduling architecture and policies

- Connect existing functions into complex function compositions
- Workflow engine takes care of the plumbing and provides fully monitorable,

fault-tolerant function compositions with low overhead.

image-recognizer translate-text

image-resizer

⼽戈弗

combine-image-text

Sequential execution

Parallel execution

validate-image

�84

Function composition...

Why serverless computing?

Development	Model

High-level	abstractions	

Pre-provided	integrations		

Language-agnostic

Pay	based	on	usage	

No	upfront/periodic	costs	

Granular	billing

Cost	ModelOperational	Model

Minimal	operational	logic	

“Infinite”	autoscaling	

Built-in	tooling:	monitoring,	
tracing,	health	checking,	etc.	

�85

!86

Direct composition

Time ↓

!87

Compiled composition

!88

Coordinator-based composition

!89

Event-driven composition

SWL execution model

Serverless Workflow Language (SWL)
• Execution-level workflow language

• Minimal constructs

• Supports complex control flows

!90
SWL data model

SWL-YAML: a reference implementation of SWL

!91

• Uses a declarative format

• Follows syntax of state-of-the-art

WMSs

• Supports JavaScript-like

expressions

